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cp = Specific heat at constant pressure
De = Channel hydraulic diameter or channel

height
Gr = Rotational Grashof number, (Ω2De)

βqwDe4/(kfυ
2)

h = Local heat transfer coefficient, 
qw/(Tw – Tb)

k = Turbulent kinetic energy
kf = Air thermal conductivity
Lx = Module length (in X direction), i.e. 20De
Ly = Module height (in Y direction), i.e. De
Lz = Module width (in Z direction), i.e. 3De
m· = Mass flow rate through the duct
Nu = Local Nusselt number, hDe/kf
Nux = Local (single) wall-averaged Nusselt

number
Nux
—

= Local peripherally averaged Nusselt
number

Nus
—

= Fully developed Nusselt number for
stationary-straight-pipe flow, i.e. 0.023
Re0.8Pr0.4

p = Pressure
Pe = Peclet number 
Pr, Prt = Laminar and turbulent Prandtl number

respectively
Q = Total heat input into a module
qw = Wall heat transfer
Re = Reynolds number, u–De/v
ReΩ = Rotational Reynolds number, ΩDe2/v
Ro = Rotation number, ReΩ/Re = ΩDe/u–

T = Temperature of air
Tb = Local bulk mean temperature of air
Tr = Reference temperature
Tw = Local wall temperature
u, v, w = Local mean-velocity components in x, y,

and z directions respectively

u– = Average mean velocity in the duct
X, Y, Z = Dimensionless rectangular coordinate,

x/De, y/De, and z/De
x, y, z = Rectangular coordinate, see Figure 2
xo = Radial distance from rotating axis to the

two-pass channel, 49De, see Figure 2
y+ = Dimensionless distance, δ √τw

——
/ρ/v

—

Greek symbols
Ω = Angular velocity of rotation
β = Coefficient of thermal expansion
δ = Distance between the wall and the

nearest-wall node 
σk,σe = Prandtl numbers for k and ε equations
ε = Rate of dissipation of turbulent kinetic

energy
γ = Air enthalpy rise parameter, Q/( ·mcpLz)
η = Pressure drop parameter
ϑ = Dimensionless temperature, (T – Tr)/

(qwDe/kf )
τw = Wall shear stress
µ,, µt = Laminar and turbulent viscosity

respectively
υ, vt = Laminar and turbulent kinematic

viscosity respectively
ρ = Air density

Subscripts
b = Bulk mean
s = Smooth or stationary 
w = Wall
x = x-dependence

Superscripts
^ = Periodicity     
– = Average
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Introduction
The increase in the turbine inlet temperature of the gas turbine engines is an
urgent need today to obtain a higher efficiency in the aircraft engines. Parallel
with the development of blade materials working in high temperature, several
ways of cooling blades are widely used in the modern engines. In general, film
cooling is imposed on the external surfaces of the blades while forced-
convection cooling is employed inside the blades by means of cooling passages.
The present study pertains to the latter, i.e. flow and heat transfer in the internal
cooling passages. As shown in Figure 1, the flow passages in an actual blade of
a typical turbine engine is idealized as a multiple-pass serpentine-type channel.
The thermal behavior within such passages is influenced by several factors,
such as the presence of sharp 180° bends and the rotational induced Coriolis
force. In addition, a strong temperature gradient, if present, creates a
centrifugal buoyancy effect that causes complex secondary flow patterns, and
consequently modifies heat transfer coefficient. The ability to predict how wall
heat transfer coefficients are affected by rotation in serpentine ducts is thus of
considerable value to engine designers.

Figure 1.
Cooling concepts of the
modern turbine blade
with serpentine cooling
passages
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Majumdar et al.[1] used the standard k-e model to resolve the parabolic
turbulent fluid flow in a rotating duct, but unsatisfactory results were obtained
for moderate to high rotation number. It was therefore suggesting the need for
modifications to account for the rotational effects. Later, by using Coriolis
modified turbulence models, Howard et al.[2] got better predictions of fully
developed rotating mean flow and turbulent viscosity. Launder et al.[3]
developed a second-moment closure turbulence model and satisfactorily
predicted rotating fully developed flow without heat transfer. In respect of
heated channels, Iacovides and Launder[4] further predicted fully developed
turbulent flow and heat transfer in rotating rectangular channels. Except in the
immediate vicinity of the wall, the standard k-e turbulence model was
employed; across the near-wall sublayer, the damping of turbulence was
modeled by means of a low-Re, one-equation model. However, due to the
presence of entrance and centrifugal-buoyancy effects in the available
experimental data, a theory-data match was difficult. Recently, Prakash and
Zerkle[5], and Tekriwal[6] predicted heat transfer results with a high Reynolds
number k-e model including thermal buoyancy effects in the momentum
equations. A reasonably qualitative agreement with experimental profiles of
local Nusselt number was obtained, but the trailing side Nusselt number was
still significantly underestimated. More recent, detailed comparisons were
made by Bo et al.[7] among the three turbulence models, namely k-e/one
equation EVM (eddy viscosity model), low-Re k-e EVM, and low-Re ASM
(algebraic Reynolds stress model) in predicting turbulent fluid flow and heat
transfer in a rotating duct by taking buoyancy effects into account. It was found
that the low-Re ASM model predictions were in encouragingly close agreement
with the experiments of Wagner et al.[8], whereas the low-Re k-e EVM provided
spectacularly unrealistic flow behavior near the suction side wall. Dutta et al.[9]
used the k-e/two-equation turbulence model to predict heat transfer from the
leading and trailing sides of a rotating square channel with radially outward
flow. Satisfactory results compared with the previous experiments[8,10] were
achieved by inclusion of the modified rotational turbulence generation terms in
the momentum and k-e transport equations.

From the above discussion of literature review, it indicates that the most
numerical investigations, indeed, only deal with developing or fully developed
flows in a single straight channel with radially outward flow. In addition, the
local heat transfer characteristics are largely dependent on the flow direction in
radially rotating serpentine channels[11]. However, the numerical efforts
containing information about the heat transfer as well as the fluid flow in a
rotating multiple-pass channel are rather sparse. This motivates the present
study which is to direct our goal to predict turbulent flow and heat transfer in a
multiple-pass square channel with orthogonal rotating conditions. The local
heat transfer characteristics along a rotating serpentine flow passage is nearly
periodic after the first turn of a multiple-pass channel[12]. Here, we focus our
attention on a periodically fully developed situation, which assumes that the
flow and heat transfer characteristics repeat themselves cyclically from the
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entrance of the channel to the next. This assumption allows the calculation
domain to be limited to the region across a two-pass (radial-inward and radial-
outward) channel, as shown in Figure 2. It is believed that a substantial body of
numerical data, as done by the present work, is highly required to accurately
predict the heat transfer coefficient, flow field, and flow regime in this important
area of gas turbine blade internal cooling problems.

Numerical and turbulence models
Governing equations 
Figure 2 shows the physical configuration of the test module of the periodic
two-pass square channel. The test module has 20 channel hydraulic diameters
in length, three in width, and one in height, and rotates at a constant angular
speed Ω about the axis normal to the main flow direction. The distance from the
rotation axis to the module is 49 De (xo). This module consists of two 90° miter
junctions at the module inlet and outlet, a radial-inward straight channel, a
radial-outward straight channel, and a 180° sharp bend, which is to simulate
the periodical region of a typical serpentine multiple-pass cooling passage of
the turbine blade. The main stream enters the channel from an entrance with a
90° miter, flows through the radial-inward-flow channel, then turns sharply
with a 180° bend to the radial-outward-flow channel, and finally exits this
channel from another 90° miter. The u, v, and w are the velocity components of
the x, y, and z directions. The labeling order of each wall of this two pass
channel is also given in Figure 2. The orientation of “left”, and “right” is chosen
as one follows the mainstream direction passing through the entire passage. To
facilitate the analysis, the flow is assumed to be steady, and of constant
properties, and viscous dissipation and compression works are ignored.
Gravitational force is neglected for its small magnitude compared to the
rotation-induced centrifugal force. The Boussinesq approximation of a linear
density-temperature relation, ∆ρ/ρ = β (∆T) is invoked for the consideration of
centrifugal-buoyancy.

Figure 2.
Sketch of coordinate
system, and dimensions
of the periodic two-pass
module
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Basically, all flow variables that repeat cyclically over the length of
computational module can be represent as follows[13].

(1)

where ϕ could be any velocity component (u, v, w), the turbulent kinetic energy
(k), or the turbulent dissipation rate (ε). As for the pressure, it can be
decomposed as 

(2)

where p̂ is cyclic (i.e. abides by above equation) while the term η z is related to
the net pressure loss over the computation module. Practically, in a periodic
analysis, the flow rate (or Reynolds number) is not known in prior. Solution for
a given flow rate is achieved by iteratively updating the value of the global
pressure gradient parameter, η, until convergence is reached. That is for a given
value of η, there will be a corresponding value of the flow rate in the channel.
Patankar et al.[13] also discussed the formulation of the thermal problem in a
periodic framework. The temperature for field under the uniform-heat-flux
conditions can be expressed as 

(3)

where T̂ is cyclic while the first term on the right-hand side is related to the net
heat gain and can be obtained from an overall heat balance, i.e. 

(4)

where Q is the total heat input over the module, ·m the mass flow rate, and cp the
specific heat. The corresponding governing equations of mass, momentum and
energy are:

(5)

(6)

(7)

(8)
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(9)

In equations (5)-(9), the symbols (div) and (grad) designate the divergence and
the gradient operators. The second and third terms on the right hand side of
equations (6) and (7) represent the rotational induced Coriolis forces and
buoyancy forces respectively. The variable symbol µt represents the turbulent
viscosity, and Prt designates the turbulent Prandtl number. The turbulent
Prandtl number is usually constant and is taken Prt = 0.86 here.

Turbulence model
The turbulent viscosity is varied throughout the flow field and obtained from
the turbulent kinetic energy (k) and the rate of the dissipation of turbulent
energy (ε)[14]. Specifically, 

(10)

The k and ε are obtained from the following transport equations: 

(11)

(12)

where G is the usual Reynolds stress turbulence production term [8,14]. The
buoyancy and Coriolis generated turbulence production terms are taken as

(13)

(14)

The buoyancy generation term, Gb, is due to Dutta et al.[9] and the related constant
C3 is taken as 0.9, which arises from the Boussinesq approximation of the velocity-
temperature cross-correlation[15]. The Coriolis modified term, Gc, is included from
Howard et al.[2]. In general, Gc is positive near the trailing wall and negative near
the leading wall in the radial-outward-flow channel, while the reverse is true in the
radial-inward-flow channel. A positive Gc enhances turbulence and a negative Gc
suppresses turbulence. The boundary layer velocity profile near the wall means
that Gc has a stronger influence at near wall region than Gb for flow and heat
transfer situations to be considered. It is found that Gb has an influence up to 9.0
percent on heat transfer for the radial outward flow, but less than a 6.0 percent
influence for the radial-inward flow. The other constants above have the following
values : σk = 1.0, σε = 1.31, C1 = 1.44, C2 = 1.92, Cµ = 0.09.

The k-ε equations provided above apply in the fully turbulent regions away
from the walls where laminar effects can be neglected. To bridge this outer
solution to the wall, the relevant equations have to be integrated across the
viscous sublayer. The wall functions, i.e. the log-law of the wall, are the outcome
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of such semi-empirical integrations. The purpose of these functions is to relate
the wall shear and heat flux to the velocity and the temperature difference
between the wall and the near-wall node[14]. 

Boundary conditions and investigated parameters
No inlet and outlet conditions are required for a periodical analysis. At the
walls, no-slip condition is used in conjunction with the wall functions. For
temperature equation, since the heat flux is prescribed at the wall, the wall
functions are used to determine the wall temperature from the computed near-
wall temperature. The difference between the wall temperature and the local
bulk temperature is then used to calculate the local heat transfer coefficient.

Since the rotational buoyancy effect caused by the density variation is
interesting in the present work, a dimensionless buoyancy parameter is
therefore developed to simplify this problem. By using scale analysis, the
dimensionless buoyancy parameter can be deduced by taking the ratio of the
third term on the right-had side of equation (6) and the convection term of the
equation (6):

(15)

From the above reduction, the buoyancy parameter is therefore expressed as
Gr/Re2 (X + Xo), which is, indeed, equivalent to the parameter of (∆ρ/ρ)[(x +
xo)/De](ΩDe/ –u )2 given by Wagner et al.[15]. In the present computation, the
buoyancy parameter Gr/Re2 is varied from 2.4 × 10–3 to 1.12 × 10–2 depending
on the quantity of heat input to the channel. The buoyancy-free case (i.e. Gr/Re2

= 0) is also conducted for comparison. The radial distance from the rotational
axis to the channel is xo = 49 De. The Reynolds number and rotational number
are kept at values of 25,000, and 0.12 respectively. 

Computational details
The control-volume-based finite difference method described by Patankar[16] is
employed to solve the governing equations described above. It uses the
primitive variables as unknowns, a staggered grid, and SIMPLER pressure
correction algorithm are employed. In addition, to reduce numerical oscillation
during iteration for |Pe| .=. 2, the finite difference scheme of smooth hybrid
central/skew upstream difference scheme (SCSUDS) is employed in this work,
the details of which can be found in Liou et al.[17]. The set of the differential
equations over the entire region of interest is solved by obtaining new values for
any desired variables, taking into account the latest known estimated values of
the variable from the neighboring nodes. One iteration process is complete
when, in line-by-line technique, all lines in a direction have been accounted for.
Solutions are considered to be converged at each test condition after the ratio of



HFF
8,5

526

residual source (including mass, momentum, and thermal and turbulent kinetic
energy) to the maximum flux across a control surface is below 10–3. 

In this problem, most of the real action is found around the 180° turns and near
all solid surfaces and, therefore, nodes are clustered in these regions in order to
resolve the strong gradients present there. However, owing to the conflicting
requirement of keeping near-wall y+ reasonably large, the grid could not be
refined excessively around the sharp turns. To keep this issue, the range of the y+

encountered on different surfaces is checked and listed in Table I. It is expected
that, as the velocities are quite small near the corners of the sharp turns, the y+

values become quite small around these regions. Also, on the right (or left) wall
adjacent to the sharp turn, the y+ values are small because of the flow
recirculation. Although the general laminar limits imposed on the wall-function
expression is y+ > 30, the use of the wall-functions is not harmful as long as the
locations of low y+ are not too many. All computations are performed on 144 × 96
× 37 straight-line grids in the present work. Additional runs for the coarser
meshes, 96 × 60 × 24, and the finer meshes, 186 × 132 × 60, are taken for a check
of grid independence. The parameters used to check the grid independence are
axial velocity profiles, temperature profiles, and the local Nusselt number
distributions. A comparison of the results of the two grid sizes, 144 × 96 × 37, and
186 × 132 × 60, shows that the maximum discrepancies in the axial velocity and
temperature profiles are 1.2 and 1.6 percent respectively, for the stationary
condition (Ro = 0). Computations for Ro = 0.12 are also conducted and the results
indicate a maximum change of 1.9 percent in Nusselt number distribution
between the solutions of 144 × 96 × 37, and 186 × 132 × 60 grids. These changes
are so small that the accuracy of the solutions on a 144 × 96 × 37 grid is deemed
satisfactory. Numerical computation of the periodically fully developed flow is
rendered difficult by the fact that no boundary information is available. Partly
due to this reason, the code takes about 8,000-12,000 iterations for convergence.
On Convex-C3840, this translated to about 10 hours of CPU time.

Results and discussion
Development of axial mean velocity and turbulent intensity
Figures 3 (a)-(c) depict the axial development of the mean velocity in the
rotating two-pass square channel with three different rotational buoyancy
parameters, i.e. Gr/Re2 = 0, 0.0024, and 0.0112. The Reynolds number and the

Variation of y+, Re = 25,000, Ro = 0.12, Gr = 0

Pressure side 30-110
Suction side 24-62
Right (or left) straight wall 18-100
Turn region 14-60

Table I.
The range of y+ on 
the difference surfaces 
of the two-pass channel
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rotation number are fixed at Re = 25,000, and Ro = 0.12 respectively. Three
sectional views shown in each plot are respectively cutting across the planes
near leading side (Y = 0.944), near trailing side (Y = 0.056) and of channel center
(Y = 0.5). The vectors are composed of the mean-velocity components in the x-
and z- directions. It is observed from these graphs that, in the radial-inward-flow
channel, the magnitude of streamwise velocity near the leading wall (Y = 0.944)
is significantly higher than that near the trailing wall (Y = 0.056) due to the
rotational induced Coriolis force. An opposed trend is found in the radial-
outward-flow channel. In the buoyancy-free case (i.e., Gr/Re2 = 0, Figure 3(a),
regardless of the flow direction, the flow patterns near the leading wall of the
radial-inward-flow channel are largely identical to those near the trailing wall of
the radial-outward channel, if the streamwise distance relative the upstream
sharp turn is the same, and vice versa. This is very reasonable because the
rotational induced buoyancy is neglected and, therefore, only the opposite
direction of the Coriolis force acting on these two channels, which is directed at
the trailing wall and leading wall for the radial-outward-flow and radial-
outward-flow channels respectively. When the buoyancy force of Gr/Re2 =
0.0024 is acting on the fluid, the magnitude of streamwise velocity near the
trailing wall for both the radial-inward-flow and radial-outward-flow channels
becomes larger than that of the buoyancy-free channels. The former is because,
in the radial-inward-flow channel, the centrifugal buoyancy parallels to the
main-flow direction, which favors the relatively hot fluid near the trailing face
(will be shown later) and, in turn, accelerates the fluid near the trailing wall. In
the radial-outward-flow channel, the centrifugal buoyancy directs against the
main flow direction, which is greater on the fluid near the leading face (hot
fluid) and smaller on the fluid near the trailing face; consequently, due to the
imbalance of the force, the radial velocity of the fluid decreases near the leading
face and increases near the trailing wall., The above phenomena become more
significant as the rotating buoyancy inertia is further increased. It is highly
noted in Figure 3(c) that for Gr/Re2 = 0.0112, the flow reversal is observed after
about X = 4.5 near the leading wall in the radial-outward-flow channel. Similar
phenomenon was observed by Prakash and Zerkle[5] for a single-pass radially
outward channel with fully developed inlet conditions at high rotating speeds
and/or density ratios. 

For simplicity, the axial mean-velocity profiles along the radial-inward-flow
and radial-outward-flow channel centerlines (Z = 0.5, and 1.75) at some selected
axial stations are depicted in Figure 4. The profiles of turbulent kinetic energy
are also shown in this figure. It is seen from this figure that the centrifugal-
buoyancy effect tends to sharpen the mean-velocity curves of the radial-
outward flow, but flatten those of the radial-inward flow. As for the turbulent
kinetic energy, the distributions are rather uniform in core flow region for the
buoyancy-free case both in radial-inward and -outward-flow channels. At the
axial station of X = 10, and 18 in the radial-outward-flow channel, the turbulent
kinetic energy near the leading side is greatly enhanced by the buoyancy
parameter. This is because relatively hot fluid near the leading wall flows



inward toward the axis of rotation, and the coolant flow is outward; therefore,
the strong shear gradient near the leading wall caused by this counter-flow
situation generates a higher near-wall turbulence kinetic energy. In contrast, in
the radial-inward-flow channel, the turbulent kinetic energy is slightly
decreased with rotational buoyancy because of the less shear gradient.

Cross-flow vectors and iso-speed contours
Figures 5 and 6 respectively display the projection of the cross-flow velocity
vectors and the iso-speed contours of the streamwise mean velocity at the
channel cross-stream planes of X = 10 for three different buoyancy parameters.
All plots are viewed in the negative X (radial-inward) direction. The solid curves

Figure 4(a).
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Figure 5.
Effect of centrifugal
buoyancy on the
secondary-flow vectors
at several axial stations
for the radial-inward
and -outward-flow
channels, (a) Gr/Re2 = 0,
(b) Gr/Re2 = 0.0024, 
(c) Gr/Re2 = 0.0112 Radial – inward
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Figure 6.
Effect of centrifugal
buoyancy on the
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contours at several axial
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flow channels, 
(a) Gr/Re2 = 0, 
(b) Gr/Re2 = 0.0024,
(c) Gr/Re2 = 0.0112 (the
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of the iso-speed counters correspond to the forward flow while the dotted
curves correspond to the reversed flow. In the radial-inward-flow channel, the
buoyancy-free flow (Gr/Re2 = 0) has a pair of vortices induced by the Coriolis
force, which circulates from the trailing wall to the leading wall through the
center of the duct and then returns back along the side walls. This vortex-pair
is slightly deflected to the left wall due to the centrifugal-inertia effect of flow
turning around the upstream 180° sharp turn. This phenomenon is also found
in the iso-speed mainstream contours which show that the largest velocity core
is slightly placed to the corner formed by the leading and left walls. When a
lower buoyancy of Gr/Re2 = 0.0024 acts on the radial-inward flow, the vortex-
pair is evidently distorted. An additional vortex-pair is bifurcated near the
corner formed by the leading and left walls. As the rotational buoyancy is
further increased, Gr/Re2 = 0.0112, the cross-flow structure seems to be more
complex, and the departure of the magnitude of mainstream velocity becomes
less between the flow near the leading and trailing walls. In the radial-outward
flow, the mainstream contours and the cross-flow vectors are largely identical to
those in the radial-inward flows regardless the flow direction. This
circumstance, however, does not keep true when the centrifugal buoyancy
arises in the heated duct. At a higher buoyancy force, Gr/Re2 = 0.0112, the
Coriolis-induced vortex-pair is significantly placed to the trailing wall 
(Figure 6 (c)) and the fluid near the leading wall flows upstream (Figure 5 (c))
with very small cross-flow intensity (Figure 6 (c)).

Isotherms and local heat transfer coefficients
Figure 7 shows a comparison of the isotherms and the distributions of the local
Nusselt number ratio between buoyancy-free and buoyancy-driven flows at the
axial station of X = 10. The local Nusselt number is normalized by the well-
known Dittus-Bolter correlation for fully developed pipe flow in stationary
conditions. In general, the strength of the thermal-field distribution is in
contrast to that of the fluid. The region of high mean-velocity, where most heat
is removed convectively away by the fluid, is the region of lower temperature. In
all plots, the local heat transfer coefficients diminish at all four corners of the
square flow cross section due to the flow velocity diminishing in both the main
and cross flow directions. At Gr/Re2 = 0, the cold fluid core is forced to the
leading wall in the radial-inward-flow duct; while an opposed trend is observed
for the radial-outward-flow duct. In comparison of the buoyancy-free results,
the fluid temperature distribution for Gr/Re2 = 0.0112 in the core-region of the
radial-inward flow is more uniform, which results in less departure of the
magnitude in the local Nusselt number ratio between the leading and trailing
walls. Conversely, in the radial-outward-flow duct, a significant temperature
rise of the fluid near the leading wall is caused by slower reversed fluid
movement due to the strong against buoyancy, which largely deteriorates the
heat transfer on the leading wall. However, this deterioration in heat transfer is
somewhat compensated by the enhancement in near-wall turbulence kinetic
energy (Figure 4). Therefore, at this station, the local Nusselt number only
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slightly decreases on the leading wall as the buoyancy parameter Gr/Re2

increases from 0 to 0.0112. In contrast, both the mean- and fluctuating-
transportation effects mentioned above benefit the heat transfer augmentation
near the trailing surface of the radially outward flow (Figures 4 and 5).

Distributions of wall averaged Nusselt number
The axial variation of the Nusselt number ratio along the four duct walls for
different buoyancy parameters is shown in Figure 8. The Reynolds number and
the rotation number are fixed at Re = 25,000, and Ro = 0.12 respectively.
Adjacent the 180° turn, regardless of the flow direction, the heat transfer ratio
distributions along the four duct walls are nearly independent of the buoyancy

Figure 7(a).
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Fluid isothermal
contours and local
Nusselt number
distributions along the
duct circumference for
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parameters investigated due to the rather strong entrance effect relative to the
buoyancy effect. As flow turns around the 180° bend, a strong cross-flow
intensity as well as turbulence intensity could be introduced due to centrifugal
inertia originated by flow curvature, flow separation, flow impingement, and
their interaction[18,19], which will largely enhance the heat transfer in the
entrance region. Therefore, the buoyancy effect becomes significant only when
the entrance effect is gradually diminished downstream. In the buoyancy-free
channel, the heat transfer distributions along the pressure side and the suction
side are totally identical between the radial-inward and -outward-flow ducts. In
addition, the local Nusselt number ratio distribution between the right and left
duct walls is significantly different, which is attributed to the aforementioned
flow behavior of turning around the 180° sharp bend. These two distributions,

Figure 8.
Effect of rotational

buoyancy on the local
wall-averaged Nusselt
number distributions

along the radial-inward
and radial-outward-flow

channels
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however, could be interchanged with each other between the radial-inward-flow
channel and the radial-outward-flow channel. Both these two facts imply that
the heat transfer characteristic is dominant by the effects of the behavior of flow
turning around the 180° bend and the rotational Coriolis force. They generate
largely identical mean-flow (including main and secondary flows, Figures 3, 5
and 6), turbulent-flow (Figure 4), and thermal fields (Figure 7) for the radial-
inward and radial-outward-flow channels.

As for the buoyancy-driven flow, owing to the different effects of the
rotational buoyancy in the co-flowing radial-inward-flow duct and in the
counter-flowing radial-outward-flow duct, the discrepancy in heat transfer
between the outward and inward flowing channels is anticipated. In the radial-
inward-flow channel, the local Nusselt number ratios along both the trailing and
leading sides increase slightly by increasing the buoyancy parameter. This
buoyancy-affected thermal behavior can be grouped into several factors. First,
rotating buoyancy augments the cross-flow intensity and, in turn, enhances
heat transfer. As given in Figure 6, the cross-flow structure for the buoyancy-
assisted flow is more complex than that for the buoyancy-free flow. Second, the
buoyancy alternates the convective ability through changing the magnitude of
the near-wall mean-velocity. The assisted buoyancy increases the streamwise
mean-velocity near the trailing side but retards it near the leading side (Figure
4, X = 10, and 18); consequently, it augments the trailing-wall heat transfer and
deteriorates the leading-wall heat transfer. Third, relatively weaker shear layer
caused by the coincident direction of the main and buoyancy-assisted flows
reduces the generation of near-wall turbulence kinetic energy (Figure 4); hence
a reduction in heat transfer. Among these three factors, the first is in favor of the
enhancement of heat transfer on the both trailing and leading walls, whereas
the last one decreases both. As for the second factor, it could reduce the
discrepancy in heat transfer between the leading and trailing walls. Obviously,
the combination of these three effects results in a slight enhancement in heat
transfer due to rotating buoyancy.

In the radial-outward-flow channel, the changes of local Nusselt number
distribution due to rotating buoyancy are more significant than those in the
radial-inward flow channel, especially for Gr/Re2 = 0.0112. In the case of Gr/Re2

= 0.0112, apparent bumpers for the distributions of local Nusselt number ratio
are observed for the four duct walls due to the initiation of the flow reversal near
the leading wall (Figure 3). The steep increase in Nusselt number ratio along the
trailing wall after about X = 4.0 is mainly due to a sharp increase of the mean-
flow velocity (Figure 3). Along the leading wall, the distribution of the Nusselt
number ratio falls to a local minimum with about 50 percent of the stationary-
fully-developed-flow value due to the relatively stagnant fluid near the leading
wall. It then increases downstream because of the enhancement of turbulence
transports caused by the strong shear gradient (Figure 4).

Attention is now turning to the channel averaged results. Comparing with
buoyancy-free channel results, the channel with a finite straight length of 18 De
in the highest rotational buoyancy investigated, say Gr/Re2 = 0.0112, enhances
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about 5 percent and 13 percent in channel-averaged heat transfer for the radial-
inward and radial-outward-flow channels respectively. This little effect of
rotational buoyancy is because the thermal conditions have been fully
developed by the complex secondary (mean) and turbulent flows caused by the
Coriolis, the mechanisms of flow turning around the 180° bend, and their
interaction. Therefore, an additional disturbance caused by rotational
buoyancy could only redistribute the local heat transfer through alternating the
mean and turbulent transportation, but no longer augments significantly the
overall performance.

As mentioned above, the reversed-flow phenomenon in the internal cooling
passages will adversely affect the heat transfer performance of the cooling
channels; therefore, it is very important to know the radial location from which
the flow separates, which can provide useful information about the thermal-
control design of the cooling channels. Figure 9 shows the relationship between
the buoyancy parameter and the radial distance (X) for initiation of flow
separation in the radial-outward-flow channel. It is seen that the radial distance
for initiation of flow separation increases with the decrease in the buoyancy
parameter. This is very reasonable because a duct with a lower wall-heat-flux at
a fixed rotating speed condition requires a longer radius of the radial ration for
reaching enough against buoyancy to drive the fluid upstream. 

Comparison with previous experimental results
Figure 10 depicts the effects of the buoyancy parameter, (Gr/Re2)[(x + xo)/De], on
the Nux/

—
Nus for the leading and trailing surfaces at several selected axial

stations in the radial-inward and radial-outward channels. The experimental
data of Wagner et al.[15] in the second and the third passages of a serpentine

Figure 9.
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rotating channel are plotted as shed bands in Figure 10 for comparison. Note
that the present study is under constant wall heat flux, while the study of
Wagner et al.[11] utilizes uniform wall temperature, and both use a square flow
channel. Note also should be taken that the results conducted by Wagner et
al.[11] are based on the regionally averaged Nusselt number, which averages
over a test segment with about four channel hydraulic diameters in length.
Therefore, the Nusselt number deduced in the present work for comparison is
averaged over 4De in channel length in the vicinity of the same radial station as
the experiment related to the rotating axis. It is seen in this figure that the
present calculation agrees reasonably well with the experiments on both the
leading and trailing walls of the radial-outward flow channel, but overpredicts
in Nusselt number ratio on the leading surface of the radial-inward-flow
channel. The general over-prediction of the Nusselt number on the pressure side
(although slightly in the radially outward flow) may be due to the difference in
the channel length between the present calculation and the previous
experiment.

Summary and conclusions
A numerical study of turbulent fluid flow and heat transfer in a periodic two-
pass channel with radial rotation has been presented. A standard k-ε turbulence
model including not only the Coriolis and rotational buoyancy effects in the
momentum equations but also the modified turbulence production and
dissipation due to the Coriolis and buoyancy effects in the k and ε transport
equations has been employed to resolve this problem. Satisfactorily reasonable
predictions have been achieved by comparing the present calculation with the

Figure 10.
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available experiments. Basically, the rotational buoyancy effects can alter the
axial velocity distribution, change the cross-flow patterns (including the
strength and core position of the secondary flow) through coupling of
continuity, and modify the turbulent transportation. The combination of all the
above effects are found to influence markedly on the local heat transfer in radial-
outward flowing channels, but insignificantly in the radial-inward-flow
channels. The other main findings from the calculation are summarized as
follows:

(1) In the buoyancy-free case, owing to secondary flow induced by the
Coriolis force, the heat transfer coefficient in the radial-inward-flow
channel diminishes on the trailing surface, but increases on the leading
surface. The trend is reversed in the radial-outward-flow channel.

(2) Rotational buoyancy alternates significantly the local heat transfer for
the radially outward flow but relatively insignificantly for radially
inward flow. The different heat transfer behaviors are mainly attributed
to different mechanisms of Coriolis and buoyancy interaction.

(3) In the radial-outward-flow channel, the against buoyancy accelerates the
relatively cooled fluid near the trailing surface, and decelerates the
relatively warm fluid near the leading surface. Once the rotational
buoyancy is sufficiently strong, the decelerated axial fluid will be
separated from the leading surface and, in turn, flow reversal over the
leading surface. Significantly poor heat transfer is found in the region of
initiation of flow separation due to the nearly stagnant fluid. It is further
found that the radial distance for initiation of flow separation is
decreased by increasing the buoyancy parameter.

(4) Although rotating buoyancy has a great effect on the local heat transfer
performance along each channel wall, it has little effect on the channel
averaged heat transfer coefficients for the rotational buoyancy
investigated. This is because the flow and thermal conditions have been
largely developed by complex interaction of the Coriolis and the flow
behavior around the 180° sharp bend; hence, additional disturbance
introduced by buoyancy, even yielding reversed flow, can not alter too
much the overall performance. 
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